Effect of different preform structures on interfacial microstructure and wear properties of WC/Fe composites material

Author:

Li ZulaiORCID,Wang XingyuORCID,Zhang FeiORCID,Shan QuanORCID,Zhang ZhexuanORCID,Zhao WeiORCID

Abstract

Abstract The WC preform was prepared by vacuum sintering, and a WC/Fe composite was obtained by an infiltration casting process with different preform structures. The microstructure of the composite was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD), and the wear properties of the three-body abrasives were further studied. The temperature field and solid-liquid variable field of the WC/Fe composite were simulated using finite element software. The results show that the microstructure of the WC/Fe composite contains WC, Ni3Fe, Ni17W3, Fe3W3C, and M7C3 carbides. With an increase in the preform column spacing from 10 mm to 20 mm, the width of the transition layer of the WC/Fe composite increased, and the hardness increased from 749 HV to 853 HV. The mass loss of the WC/Fe composite decreased initially and then increased with an increase in the preform column spacing. The microstructure and wear resistance of materials are related to the W content in the transition layer, and the diffusion behavior of W is affected by the diffusion distance and time.

Funder

National Natural Science Foundation of China

Science Foundation of the Yunnan Provincial Science and Technology Department

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3