Adsorption characteristics of bovine serum albumin onto α-Fe2O3 nanoparticles prepared via the alcohol solution combustion process of ferric nitrate

Author:

Li Yongjin,Zhu Ziye,Lv ZhixiangORCID,Wang Zhou,Chen YuefangORCID

Abstract

Abstract The α-Fe2O3 nanoparticles were prepared via the alcohol solution combustion process of ferric nitrate. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS). X-ray diffraction (XRD), and vibrating sample magnetometer (VSM) were taken to characterize the prepared α-Fe2O3 nanoparticles. The average particle sizes of the as-prepared α-Fe2O3 nanoparticles were approximately 180 nm, and their magnetic property was approximately 0.42 emu·g−1 after the measurement. The different concentrations of BSA solutions and the adsorption times were investigated to investigate the adsorption characteristics of bovine serum albumin (BSA) onto α-Fe2O3 nanoparticles. For larger adsorption capacity and higher removal rate, the dose of α-Fe2O3 nanoparticles in aqueous solution was selected at 2.5 mg·ml−1. The adsorption process of BSA onto α-Fe2O3 nanoparticles conformed to the pseudo-first-order kinetic model. While, the correlation coefficient (R2) of the Temkin isothermal model was higher than Langmuir model and Freundlich isothermal model, suggesting that the isothermal model of BSA onto α-Fe2O3 nanoparticles was more in line with Temkin isotherm model. Which suggested that the adsorption behavior of magnetic α-Fe2O3 nanoparticles for BSA belonged to multi-molecular layer chemisorption. When BSA concentration was 600 mg·l−1 and the pH of solution was 5, the adsorption capacity of BSA onto magnetic α-Fe2O3 nanoparticles achieved 114.2 mg·g−1, and the adsorption rate could still reach 70.3% of the first time after 7 cycles.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3