Fabrication of Fe3Al cladding layers by cold metal transfer arc deposited technique

Author:

Chen Chen,Zhao Jingyu,Zhou JianORCID,Xue Feng

Abstract

Abstract Fe3Al cladding layers were fabricated on the steel plate using cold metal transfer arc deposited technique. The effect of current intensity on the morphologies, microstructures, and mechanical properties of the cladding layers was investigated. Under low-current conditions, the Fe3Al cladding layer exhibited excellent formability, favourable wettability, and low dilution rate without defects such as gas holes and cracks. The cladding layer was composed of Fe3Al phase and FeAl phase. The microstructure of the cladding layer was divided into a fine grain zone, a columnar grain zone, and an equiaxed grain zone. A transition layer appeared at Fe3Al/steel interface, and the bonding strength between the cladding layer and steel plate was high. With increasing current, cracks were generated at Fe3Al/steel interface and the bonding strength was reduced.

Funder

Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technique

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3