A novel dual phase high entropy casting alloy with high damping capacity

Author:

Xu Cheng,Geng Ningning,Xiang Qingchun,Qu YingdongORCID,Yu Bo,Qiu KeqiangORCID

Abstract

Abstract The microstructure, phase structure, mechanical properties and damping capacity of Al x Fe2CrNiCu (x = 0.0, 0.5, 0.75, 1.0, 1.5) (x in molar ratio) HEAs were investigated. The results show that with the increase of x value, the volume fractions of BCC phase increase from 0 for x = 0.0 to 100% x = 1.5 for the as-cast Al x Fe2CrNiCu HEAs. Among them, a novel dual phase microstructure consisting of 51 vol.% FCC and 49 vol.% BCC with large interface area was obtained in Al0.5FeCrNiCu HEA. Especially the compressive yield strength of the alloy with BCC structure is more than 5 times larger than that of the alloy with FCC structure, indicating that a typical damping alloy with a soft second phase distributed on the hard matrix was successfully fabricated. Compared with other HEAs, the damping capacity (Q−1) of Al0.5 HEA is 0.1, which is the largest one obtained up to now. The foundational contribution of this paper is to show that the damping capacity of the HEAs can be adjusted by tuning the volume fraction of BCC and FCC phases.

Funder

NSFC

Natural Science Foundation

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3