Asymmetrical compound parabolic concentrator with single flow system: field-test scale, thermal performance parameters, and E. coli inactivation

Author:

Laithong Wreerat,Tepsri Phattarathicha,Thepa Sirichai,Songprakorp Roongrojana,Yoriya SorachonORCID

Abstract

Abstract This work presents a developed field-test scaled asymmetrical compound parabolic concentrator (ACPC) and an investigation of its performance with a single flow system of water on Escherichia coli inactivation. As a function of water flow rate, ability to produce hot water of the ACPC and hence inhibit the growth of bacterial in water is focused to study; the flow rates varied are 0.2, 0.4, and 0.6 l min−1. With a design and choice of material, the constructed ACPC unit with 0.2 l min−1 could produce hot water with maximum temperature of 76.4 °C, with lower flow rates resulting in the lower outlet water temperature and consequently the reduced kinetics of bacteria inactivation. Thermal performance parameters have been described in a correlative view with the particular operation condition and flow rate variables through mathematic calculation. The effect of inlet driving temperature, believed to play a significant role controlling the outlet temperature, on E. coli inactivation has been investigated.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3