Effect of martensitic reversal and grain size on the corrosion and wear behaviour of Cr-Mn steel

Author:

Shukla SourabhORCID,Jaju Santosh,Untawale Sachin,Chavhan Jitendra,Vashishtha Nitesh,Dhakane Atul,Bansod AnkurORCID,Gahiga GabrielORCID

Abstract

Abstract In this study, the effect of corrosion and wear behaviour of Cr-Mn steel on fine grains were investigated. The sample were solution annealed (SA) for 1 h at 1050 °C and then cold rolled (CW) to 30%. Further the cold rolled sample were thermally aged (CW + TA) 900 °C for four hours. The findings showed that under the 10 N applied load, wear resistance increased with an increase in hardness and martensite fraction of the cold worked (CW) samples. However, the Cr-Mn steel had the superior wear resistance after thermal ageing (TA). In microstructural examination deformation bands can also be visible in cold work samples. The analysis implies that the γ-phase is apparent across all peaks within the spectra of SA samples. In instances involving 30% cold work, prominent α′ martensite peaks were observed, accompanied by minimal ε-martensite peaks. Electrochemical impedance spectroscopy (EIS) analysis discloses a reduction in impedance and a concurrent increase in the defect density of the passive film. The CW+TA structure with good inclusive performances created an early constant hardened layer, which didn’t delaminate and peel off prematurely, thereby effectively increasing the wear resistance, according to analysis of the wear mechanism. The results also concluded that the corrosion resistance of CW sample decreases due to SIM formation, however CW+TA sample provide better corrosion resistance due to smaller and refined grain size.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3