Densification and shaping of pure Cu-BTC powders using a solid-state chemical transformation

Author:

Karve Vikram V,Mabillard Alexandre,Espin Marti JordiORCID,Asgari Mehrdad,Queen Wendy L,Soutrenon MathieuORCID

Abstract

Abstract MOFs are a class of porous crystalline materials whose unique properties have led to applicability in several fields ranging from gas adsorption to drug delivery. Despite their high potential, MOFs are usually found as fine powders, a property that can limit their use in industrial applications. Here, a novel approach is proposed to form densified Cu-MOF (Cu-BTC) powders and monoliths using 1,2-ethanedisulfonic acid (EDSA) as a densification agent. A MOF/EDSA mixture was heated to ∼150 °C; the molten EDSA not only promotes the growth of larger MOF crystallites, but also stimulates condensation reactions between the carboxylate-based MOF ligands, further binding the particles together. When this reaction was done in a stainless-steel die under pressure MOF-based monoliths could also be formed. Notably, using this approach, the MOF had a higher density, significantly improving the volumetric CO2 adsorption capacity. We believe this contribution provides the basis for future work wherein the intrinsic MOF particle surfaces can be selectively engineered to improve their properties towards shaping for industrial applications.

Funder

Haute école Spécialisée de Suisse Occidentale

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3