Abstract
Abstract
In this paper, the electrical transport in free-standing graphene and N-graphene sheets fabricated by a microwave plasma-based method is addressed. Temperature–dependent resistivity/conductivity measurements are performed on the graphene/N-graphene sheets compressed in pellets. Different measurement configurations reveal directional dependence of current flow—the room-temperature conductivity longitudinal to the pellet’s plane is an order of magnitude higher than the transversal one, due to the preferential orientation of graphene sheets in the pellets. SEM imaging confirms that the graphene sheets are mostly oriented parallel to the pellet’s plane and stacked in agglomerates. The high longitudinal electrical conductivity with values on the order of 103 S/m should be noted. Further, the current flow mechanism revealed from resistivity-temperature dependences from 300K down to 10K shows non-metallic behavior manifested with an increasing resistivity with decreasing the temperature
d
ρ
/
d
T
<
0
usually observed for insulating or localized systems. The observed charge transport shows variable range hopping at lower temperatures and thermally activated behaviour at higher temperatures. This allows us to attribute the charge transport mechanism to a partially disordered system in which single graphene sheets are placed predominantly parallel to each other and stacked together.
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献