Abstract
Abstract
In this study, a promising electrolyte material Bi0.76Lu0.16Ti0.08O1.5+δ
(abbreviated as ‘8T16LSB’) with high oxygen ion conductivity was obtained by co-doping with Lu2O3 and TiO2 into Bi2O3. The phase composition, microstructure, and conductivity of TLSB ceramics were respectively investigated by x-ray diffraction, scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). XRD results exhibited that the sintered TLSB ceramics with an unchanged total doping concentration of 24 mol.% existed as a cubic fluorite structure. SEM results showed that the TLSB pellets were relatively dense. The relationship between temperature and conductivity showed that the 8T16LSB ceramic exhibited the highest conductivity of 0.56 S cm−1 at 700 °C, which was higher than the value of 0.37 S cm−1 for the representative single-doping Er0.4Bi1.6O3 (abbreviated as ‘20ESB’). The results certified that the electrochemical performance of Bi2O3 was promoted by the co-dopant of Lu3+and Ti4+.
Funder
Natural Science Foundation of Jilin Province
Research Funds for the Central Universities
Jilin Provincial Department of Education Foundation
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献