Fabrication of chlorine nitrogen co-doped carbon nanomaterials by an injection catalytic vapor deposition method

Author:

Maboya Winny KORCID,Coville Neil JORCID,Mhlanga Sabelo DORCID

Abstract

Abstract The synthesis of both covalently bonded chlorine and nitrogen-doped carbon materials (Cl-N-CNMs) has been little studied. In this paper we report on the investigation of the synthesis of Cl-N-CNMs using a feedstock containing a mixture of dichlorobenzene (DCB), acetylene and acetonitrile over a Fe-Co/CaCO3 catalyst using an injection CVD method at 800 °C. By varying the acetonitrile:DCB concentration ratio (66.7:33.3; 33.3:66.7 and 20:80), the morphology and physicochemical properties of the CNMs was varied. The products contained varying amounts of Cl (0.5%–1.2%) and N (0.88%–1.47%) and the total amount of Cl and N increased with the Cl content in the feed, as determined by XPS. A graphitic N environment dominated in feeds containing 33.3 and 66.7 vol.% DCB, whilst pyrrolic N dominated in feeds containing pure acetonitrile and 80 vol.% DCB. The chlorine in the feed promoted the formation of CNMs with various shapes namely horn-shaped, spaghetti-like, and pencil-like shapes, some with open-ends and others with closed-ends as determined by TEM and SEM studies. Although no direct correlation with the amounts of the reactants used and the morphology of the products was established, trends in the product shapes were noted with highly defected products produced from 66.7 vol.% DCB, and feeds containing 33.3 and 80 vol.% had tubes with similar open-ended horn-shaped morphology and less defects.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3