Graphene's effect and mechanism on the properties of alkali-activated slag coating

Author:

Wang SimingORCID,Luo Xiang,Hua SudongORCID,Zhang Yanan,Chen Tingzhu

Abstract

Abstract Using alkali-activated slag to prepare coatings is an alternative solution for concrete repair and protection. However, shrinkage cracking limits the application of alkali-activated slag, which also increases the risk of coating peeling. Graphene dispersions (content of 0.2%, 0.4%, 0.6% and 0.8%) were added to the alkali-activated slag coatings. The drying time, apparent circumstance (thicknesses of 1 mm, 2 mm, 3 mm and 5 mm) and the tensile bond strength with 1 mm thickness coating were determined. The mechanism of action was analyzed in terms of both product and interfacial properties. The experimental results showed that the graphene dispersion would shorten the drying time of the coatings. The drying time was reduced by 57.1% (from 116 min to 52 min). Moreover, the graphene dispersion improves the cracking of the coating. The larger the coating thickness is, the better it improves the cracking effect. The surface cracking of the coating with 5 mm thickness was reduced by 60.7% (from 1.6751% to 0.6583%). Graphene can significantly improve the bond strength of the coating. When the graphene content is 0.8%, the bonding strength with a thickness of 1 mm is 0.502 MPa at 7 days and 1.577 MPa at 28 days. The bond strength increased by 280.3% and 175.2%, respectively, XRD, FTIR and SEM analysis showed that the increase in bond strength was caused by two factors. (1) Graphene can promote the generation of zeolite phase in alkali-activated slag. This is conducive to enhancing the interlayer adhesion of the coating itself. (2) Graphene is beneficial to reduce the pores in the transition zone between the coating and the substrate and enhance the contact area between the coating and the substrate and makes the transition zone denser.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3