First synthesis of 2D materials by hypergolic reactions and evaluation of their dispersions for ink formulation: hexagonal boron nitride and fluorinated carbon nanosheets

Author:

Chalmpes NikolaosORCID,Bourlinos Athanasios B,Alsmaeil Ahmed Wasel,Aljarrah Abdulaziz S,Salmas Constantinos E,Karakassides Michael A,Giannelis Emmanuel P

Abstract

Abstract Hypergolic reactions have emerged as a new synthetic approach enabling the rapid production of a diverse set of materials at ambient conditions. While hypergolic reactions bear several similarities to the well-established flame spray pyrolysis (FSP), the former has only recently been demonstrated as a viable approach to materials synthesis. Here we demonstrate a new pathway to 2D materials using hypergolic reactions and expand the gallery of nanomaterials synthesized hypergolically. More specifically, we demonstrate that ammonia borane complex, NH3BH3, or 4-fluoroaniline can react hypergolically with fuming nitric acid to form hexagonal boron nitride/fluorinated carbon nanosheets, respectively. Structural and chemical features were confirmed with x-ray diffraction, infrared, Raman, XPS spectroscopies and N2 porosimetry measurements. Electron microscopy (SEM and TEM) along with atomic force microscopy (AFM) were used to characterize the morphology of the materials. Finally, we applied Hansen affinity parameters to quantify the surface/interfacial properties using their dispersibility in solvents. Of the solvents tested, ethylene glycol and ethanol exhibited the most stable dispersions of hexagonal boron nitride (h-BN). With respect to fluorinated carbon (FC) nanosheets, the suitable solvents for high stability dispersions were dimethylsulfoxide and 2-propanol. The dispersibility was quantified in terms of Hansen affinity parameters (δ d, δ p,δ h) = (16.6, 8.2, 21.3) and (17.4, 10.1, 14.5) MPa1/2 for h-BN and FC, respectively.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3