Abstract
Abstract
Macromolecules incorporating N-halamines have shown significant antibacterial properties and can be regenerated by chlorination. In this work, a new type of regenerable material made of nano-sized latex particles having N-H groups was prepared via the emulsion polymerization of methacrylamide and dodecafluoroheptyl methacrylate with divinylbenzene as a crosslinker. The N-H moieties in this polymer were subsequently transformed into N-Cl groups by chlorination with an aqueous sodium hypochlorite solution, and films were prepared by casting on substrates previously coated with a self-adhesive silicone rubber. The nanoparticles and the films were characterized by Fourier transform infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), contact angle measurements, scanning electron microscopy (SEM) and microbiological tests. The results showed that F and Cl were successfully incorporated in the nanoparticles, that the films were thermally stable and hydrophobic (with a contact angle of 152°), and that these materials exhibited antimicrobial properties. The N-Cl groups killed bacteria by releasing active chlorine as they transitioned to N-H groups, and could be re-chlorinated with a methanol solution of isocyanuric chloride. FTIR and XPS analyses confirmed this regeneration, while SEM image showed that the morphology of the original microspheres was maintained after re-chlorination. The re-chlorinated films also maintained superhydrophobic and bactericidal characteristics.
Funder
the Science and Technology Research Projects of Lishui Sci Techn Bureau
National Natural Science Foundation of China
the Medicine and Health Science and Technology Plan Projects of Zhejiang Province
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献