Preparation and application of low temperature protection materials by Na2SO4·10H2O/PS phase change microcapsules

Author:

Xie WenhanORCID,Jiang Yongqing,Liu Zhengmei,Wang Bo,Han Tianchan

Abstract

Abstract To find the phase change microcapsule material (MEPCM) with suitable temperature and high heat storage energy. The phase change microcapsules with sodium sulfate decahydrate (Na2SO4·10H2O) as core material and polystyrene (PS) as wall material were prepared by emulsion polymerization. The microcapsule is fixed on the cloth of the overalls by coating method, and the thermoregulation fabric is obtained. The microcapsules were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and infrared spectroscopy (FTIR). Fabrics are tested for durability, air permeability and temperature control. The DSC results show that the Tc and Tm of Na2SO4·10H2O/PS microcapsules are 26.0 °C and 58.0 °C, respectively, and the ΔHc and ΔHm are 64.0 J g−1 and 121.1 J g−1, respectively. The TG results show that the first weight loss temperature range is 104.1 ∼136.7 °C, and the second weight loss temperature range is 395.5 ∼434.6 °C. The infrared spectral characteristic peaks of microcapsules include all the characteristic peaks of Na2SO4·10H2O and PS. In the range of microcapsule phase transition temperature, the cloth treated with 0.5 g MEPCM and 1.5 g MEPCM delayed the temperature change by 16.0 ∼23.0 °C and 10.0 ∼18.0 °C, respectively, compared with the blank cloth. The fabric treated with 0.5 g microcapsules was subjected to 100 and 300 heating/cooling cycles. Compared with before and after the cycles, the fabric after thermal shock cycles showed a 4.15% and 3.56% reduction in delayed temperature changes rate in a rising and falling temperature environment. Therefore, Na2SO4·10H2O/PS microcapsule material can achieve the goal of heat storage and energy storage, and can be used as a low-temperature operation protection material.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3