Engineered K-doped ZnO/borneol based hydrogel composite material for led-based photocatalytic degradation of methylene blue and evaluation of antimicrobial activity

Author:

Zhang Weiyi,Zhang Dandan,Lv Huanzhi,Zhou Zhenjie,Wang Lingnan,Xie Shibing,Zheng ZexiangORCID

Abstract

Abstract The significant improvement of decolorization and disinfection technologies has been a hotspot in wastewater reutilization. In this study, we realized a novel construction of K-doped nano-ZnO and borneol based hydrogel composite material (K-ZnO/B-hydrogel) by low-temperature in situ sol–gel growth. The techniques such as fourier transform infrared (FTIR), X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS) were applied to recognize the synthesized hydrogel. The results revealed that K-doped ZnO nanoparticles had been uniformly decorated onto the B-hydrogel. Ultraviolet-visible (UV–vis) absorption spectra showed that impurity doping of potassium element into ZnO could reduce the band gap, improving the visible light absorption efficiency. Under LED illumination, the photodegrading rate of K-ZnO/B-hydrogel was approximately 2.3 times greater than that of K-ZnO/B-hydrogel on methylene blue (MB) removal. Remarkably, aside from CO2 and H2O, no by-products were generated during the photodegradation process. In addition, the antimicrobial activities against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of K-ZnO/B-hydrogel achieved up to 99.9%, which were at least 1.5 times higher than K-ZnO/B-hydrogel. This composite will push ahead with a closed-loop wastewater treatment system for dye and pathogenic microorganism disposal, which combines the excellent adsorption ability of hydrogel and the outstanding photocatalytic ability of ZnO nanoparticles with easy sample handling and separation, and help to eliminate secondary pollution.

Funder

Science and Technology Research Projects of Lishui

Natural Science Foundation of China

Zhejiang Province Basic Public Welfare Project

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3