Mechanical characteristics and stretch-bend failure analysis on ultra high frequency pulsed gas tungsten arc welded thin FSS 409/430 dissimilar joints

Author:

Nagarajan Anandharajan,Marimuthu BalakrishnanORCID

Abstract

Abstract The Mechanical and Stretch-Bend Failure studies on Ultra High Frequency Pulsed Gas Tungsten Arc Welded dissimilar joints of AISI409-AISI430 Ferritic Stainless Steels were conducted. Welding was conducted with 5 ultra high frequencies (50 Hz, 150 Hz, 250 Hz, 350 Hz, 450 Hz). Mechanical characteristics evaluation on the joints included tensile strength, microhardness variations across the welds and creep. Microstructural and metallurgical investigations included weld cross section evaluation, comparing grain variations in high, medium and low thermal heat affected zones, weld zones and base material region. Stretch bend failure studies included studies on angular distortion, fracture limit strain, and coefficient of friction. Tests revealed that joints welded at 350 Hz was better, compared to other joints. Dissimilar AISI409-AISI430 joint fabricated at 350 Hz exhibited 267 ± 3 MPa as yield and 409 ± 6 MPa and as ultimate tensile strength. Its creep fracture duration was 72.7 min (highest among the joints). Microstructural studies revealed grain growth, partially coarse and partially fine grains in heat affected zones. Depending on the difference in grain sizes, on both sides of the welds, heat affected regions were identified as three distinct zones. In AISI430 side; high temperature austenitic, martensitic, delta ferrites and in AISI409 side; needle like martensitic structures, mixture of ferritic-austenitic, δ-ferrite with carbide precipitation were found in high, medium and low thermal heat affected zones, respectively. On increasing the ultra high frequency pulses, angular distortion increased, fractures changed from tensile/shear type to mixed type. In shear bend tests, on increasing the ratio of radius: thickness, fracture limit strain on outer surface, across sheet thickness, due to stretching increased.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3