Dynamic mechanical damping analysis of up/step-quenched Cu-Zn-Sn-based shape memory alloys

Author:

Anaele Justus UchennaORCID,Alaneme Kenneth KanayoORCID,Omotoyinbo Joseph Ajibade

Abstract

Abstract The effect of thermal quenching procedures on the damping properties of Cu-Zn-Sn-based SMAs is reported. Three compositions of Cu-Zn-Sn-based SMAs designated A (Cu-15.6Zn-12.1Sn), B (Cu-26.1Zn-9.3Sn), and C (Cu-29.6Zn-8.9Sn) samples produced by the casting process were subjected to direct quenching, up-quenching, and step-quenching treatments. The microstructure of the samples was examined using the backscattered electron microscope with fixtures for energy-dispersive spectroscopy analysis. The damping properties were assessed on a dynamic mechanical analyzer and presented in terms of tan delta. The microstructures of Cu-Zn-Sn-based SMAs consist of γ-Cu5Zn8 and Cu4 major phases containing some black dot precipitation and a small amount of white circular precipitates in the parent phase. For the A alloys, the step-quenched samples exhibited the highest damping capacity with peak internal friction of 0.041 at 37 °C, which is greater than 0.028 at 37 °C and 0.26 at 25 °C obtained for the up-quenched and direct-quenched samples respectively. The step-quenched B alloys show the highest damping capacity with peak internal friction of 0.104 at 227 °C, which is far greater than 0.053 at 23 °C and 0.034 at 35 °C obtained for the up-quenched and direct-quenched samples respectively. For the C alloys, the up-quenched samples show the highest damping capacity with peak internal friction of 0.053 at 235 °C, which is greater than the peak values of 0.037 at 23 8 °C obtained for the step-quenched samples. Direct-quenched samples gave the lowest damping capacity with a peak value of 0.027 at 235 °C. In general, step-quenching treatment effectively improved the damping properties of Cu-Zn-Sn-based SMAs.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3