Abstract
Abstract
The current study investigates Bi2S3 thin films coated on ZnO NRAs with varying cationic concentrations through ionic layer adsorption and reaction (SILAR) technique. XRD patterns reveal that Bi2S3 is successfully synthesised and exhibits orthorhombic structure on the wurtzite ZnO NRAs. The band gap energy (Eg) of Bi2S3/ZnO NRAs shows a notable red shift with increasing cationic concentration. The photocurrent density increases significantly with increasing concentration from 1 mM to 3 mM before decreases at higher concentration due to agglomeration of Bi2S3 NPs and formation of recombination centres. The hybrid photoanode Bi2S3/ZnO NRAs at 3 mM exhibits the highest photocurrent value (1.92 mA cm−2), which is about six times greater than that of plain ZnO NRAs (0.337 mA cm−2). The high photoconversion efficiency value of 1.65% versus 0.5 V Ag A−1g−1C−1l−1 is obtained by Bi2S3/ZnO NRAs (3 mM) in comparison with pristine ZnO NRs, mainly due to the stepwise band alignment edge and significant enhancement of morphological and optical properties. The study reveals that controlling the cationic concentration can potentially improve the photoconversion efficiency.
Funder
Ministry of Higher Education of Malaysia
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献