Formation of L10-ordered CoPt during interdiffusion of electron-beam-deposited Pt/Co bilayer thin films on Si/SiO2 substrates by rapid thermal annealing

Author:

Toyama RyoORCID,Kawachi Shiro,Iimura Soshi,Yamaura Jun-ichiORCID,Murakami Youichi,Hosono Hideo,Majima YutakaORCID

Abstract

Abstract Preparation of ordered CoPt on Si substrates is significant for expanding future applications of spintronic devices. In this study, ordered CoPt alloys including the L10 phase with a maximum coercivity of 2.1 kOe are formed in electron-beam-deposited 11.4 nm thick Pt/Co bilayer thin films on Si/SiO2 substrates via interdiffusion during rapid thermal annealing (RTA). The effects of RTA temperature on the magnetic properties, crystal structures, cross-sectional elemental profiles, and surface morphologies of the films are analyzed by vibrating sample magnetometer (VSM), grazing incidence x-ray diffraction (GI-XRD), energy-dispersive x-ray spectroscopy (EDX), and scanning electron microscope (SEM), respectively. For the as-deposited film, polycrystalline Pt was confirmed by uniform Debye–Scherrer rings of Pt. At 200 °C, interdiffusion between Co and Pt atoms in the film started to be observed by EDX elemental maps, and at 300 °C, alloying of Co and Pt atoms was confirmed by diffraction peaks corresponding to A1-disordered CoPt. At 400 °C, the in-plane coercivity of the film began to increase. At 700 °C, ordered CoPt alloys were confirmed by superlattice diffraction peaks. At 800 °C, a graded film containing L10-ordered CoPt was found to be formed and a maximum coercivity of 2.1 kOe was observed by VSM, where the easy axis of magnetization was oriented along the in-plane direction. At 900 °C, deformation of the ordered CoPt alloys was observed by GI-XRD, and the grain size of the film reached a maximum.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3