Fabrication and characterization of co-electrospun cellulose/poly (4-methyl-1-pentene) nanofibers with improved tensile properties

Author:

Narejo Abdul Rahim,Qureshi Raja Fahad,Almas Rabia,Memon Sanam Irum,Mahar Faraz KhanORCID,Syed Noureen,Ahmed FarooqORCID,Khatri ZeeshanORCID

Abstract

Abstract In this study, cellulose acetate and poly (4-methyl-1-pentene) (CA/PMP) nanofibers were co-electrospun with a blending ratio of 1:1 and followed by deacetylation treatment to produce cellulose/PMP nanofibers. The physical morphology of nanofibers was characterized by SEM which reveals even and bead-less morphology of nanofibers with an average diameter of 650 nm. FTIR study confirmed the removal of acetyl groups after deacetylation, and x-ray diffraction analysis was performed to analyze the crystalline nature of nanofibers. The calculated crystallinity and crystal size of CA/PMP nanofibers are 82% and 34 Å. The tensile strength study revealed that the combination of both CA and PMP nanofibers with the blending ratio of 1:1 has improved the tensile strength of composite nanofibers. Further, the deacetylation process has also increased the tensile strength. The obtained tensile strength and Young’s modulus are 6.9 MPa and 195 MPa for cellulose/PMP nanofibers which could be a value addition in cellulose-based membranes.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3