Investigation on mechanical and tribological properties of magnesite reinforced aluminium 6061 composites

Author:

Ayyappan SORCID,Saminathan MORCID,Selvarasan R

Abstract

Abstract During the sintering process in the shaft kiln of refractory factories, a considerable quantity of materials is separated and dumped as Waste Magnesite (WM). The other superior grades, Lightly-Calcined Magnesite (LCM) and Dead-Burned Magnesite (DBM), are separated at different temperatures from the shaft kiln. The WM materials still have 8% of magnesium with some sand and dust particles in huge ranges. These materials are primarily used in the applications of medicine and fertilizers and animal feed processing and additives. This work investigates the potential of WM particles as reinforcement materials in the Al 6061 alloy matrix. In order to compare the characteristics of WM-based composite, LCM and DBM powders were also considered as reinforcement particles. The WM, LCM, and DBM particles were mixed with a 15% weight ratio to Al 6061 alloy, and composites were fabricated using the Stir Casting method. The surface morphology investigations through Scanning Electron Microscopy (SEM) revealed that these particles were well distributed and dispersed within the alloy matrix and with good interfacial adhesion. It is noted that Al 6061/15% wt. LCM composite possesses a better tensile strength than Al 6061/15% wt. WM and Al 6061/15% wt.DBM composites. The impact value produced by the WM-based composite is better than the LCM and DBM composites. The Wear Rate and Coefficient of Friction (COF) were examined through a Pin-on-Disc apparatus. Al 6061/15% wt. WM composite tested a low wear rate (9.74 × 10−6 mm3 m)−1. The results show that Al 6061/15% wt. LCM composite achieved the least COF value of 0.681 at an applied load of 0.5 Kg and a sliding distance of 2826 m. The results prove that the wastage magnesite is good enough and the most robust reinforcement material for Aluminum 6061 alloy-based composite.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference37 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3