Effects of boron addition on the microstructure and creep properties of a Ni-Fe-based superalloy weld metal alloy

Author:

Xie Wencai,Wu Dong,Lu ShanpingORCID

Abstract

Abstract The role of boron in the creep properties and grain boundary characteristics in a new Ni-Fe-based weld metal suitable for advanced ultra-supercritical (A-USC) coal-fired power plant applications has been investigated. Ni-Fe-based filler wires without boron and boron-doped (50 ppm wt% boron) were prepared for this study. Boron-doped weld metals exhibited longer rupture lives and lower steady creep rates during the creep rupture tests at 750 °C / 380 MPa and 750 °C / 210 MPa. This study explains the improvement mechanism of boron on creep resistance from the perspective of the effect of boron on M23C6. Boron increased the nucleation rate of M23C6 and participated in the formation of M23(C, B)6 type boron-carbides. After creep deformation, boron still existed stably in the M23(C, B)6. The higher density of discrete M23C6 particles due to boron addition could restrain grain boundary crack propagation and grain boundary sliding, and thereby improve the creep fracture resistance of the GH984G weld metal at 750 °C / (380/ 210 MPa).

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference44 articles.

1. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants;Di;The Fossil Fuel Power Plants Technology,2017

2. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants;Fukuda;Advanced USC Technology Development in Japan,2017

3. Carbon Capture: Analysis of Electricity Penalty and CO2Emission Reduction;Tramošljika;Sustainability,2021

4. State of the art and perspectives of coal-fired power plans;Gasteiger;Fuel Energy Abstr.,2003

5. Update on United States Advanced Ultra-Supercritical Component Test Project for 760°C Steam Conditions;Hack,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3