The damage mechanism of tension-tension fatigue interaction with creep damage of the compacted graphite cast iron alloy at high temperatures

Author:

Yue WuORCID,Zehui Pei,Zhijun Ma,Zhong Yang,Yongchun Guo,Minxian Liang,Jianping Li,Hua Chen

Abstract

Abstract The tension-tension fatigue test of the compacted graphite cast iron (CGI) alloy was carried out by RDL100 universal testing at 500 °C and 550 °C, respectively. A tension-tension trapezoidal load is applied to the CGI specimen. Because of the time-dependent deformation at elevated temperatures, the stress–strain curve presents hysteresis loops, and the area of the hysteresis loop increases gradually with continuous cyclic loading and sustained loading times. Intergranular and transgranular cracks in the microstructure accelerate the CGI alloy fracture failure. The fatigue life is sensitive to the short loading time and decreases with the sustained loading time exponentially under the tension-tension fatigue condition. The short holding time has a great influence on the fatigue life of CGI. The fatigue behavior of CGI alloys and the influence of holding time on the fatigue life can be characterized by y = aexp(bx) (a and b are constants, can be fitted through the test data). In addition, the fatigue life of CGI alloy can be predicted by the ductility depletion method. But the equivalent stress amplitude needs to be modified to eliminate the effects of oxidation damage.

Funder

Key Research and Development Plan of Shaanxi Province

Scientific research initiation project of Xi'an Technological University

Education Department Service and Local Special Plan Project of Shaanxi provincial

Shaanxi Creative Talents Promotion Plan-Technological Innovation Team

Key Project of Equipment Pre-research Field Fund

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3