A non-unified viscoplastic constitutive model based on irreversible thermodynamics and creep-fatigue life prediction for Type 316 stainless

Author:

Cui YehuiORCID,Zeng Xiangguo,Xiao Junfeng,Chen Huayan

Abstract

Abstract In this work, to describe the cycle behavior considering fatigue-creep interaction, a non-unified viscoplastic constitutive model for 316 stainless steel is derived within the irreversible thermodynamic framework. The internal variables considering kinematic and isotropic hardening properties are selected to construct the evolution equation of visco-plastic and creep terms. The proposed constitutive model was validated by the comparison with the existing literature. It was manifested that this constitutive model could successfully predict the hardening behavior and stress relaxation process under the cyclic loading. During the dwell period, the increment of the inelastic strain is decomposed into the viscoplastic and creep term. The viscoplastic deformation dominates first stage of the stress relaxation, while the stable stage is controlled by the creep term. Finally, the predicted values of mean stress are taken into the Manson-Coffin law, the low cycle fatigue life prediction are carried out based on the numerical model, which showed robust correlation with experimental results.

Funder

Sichuan province

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3