Optimization of process parameters for hot isostatic pressing of Ir–Rh alloys based on first-principles calculations

Author:

Mao ZhangORCID,Xian Wang,Qin-qin Gao,Chang-yi Hu,Jun Zhao,Hong-zhong Cai,Gui-xue Zhang,Xing-qiang Wang,Xu-xiang Zhang,Yan Wei

Abstract

Abstract In this paper, the effect of Rh content on the mechanical properties of Ir–Rh alloys was investigated based on first-principles density functional theory. The calculated results show that when the Rh content is small, the three elastic moduli (elastic modulus (B), shear modulus (G), and Young’s modulus (E)) of Ir–Rh alloy increase rapidly with the increase of Rh content. They reach a maximum value at Ir–10Rh and then decrease, before rising slowly at Ir–40Rh and then gradually decreasing again. This shows that adding a small amount of rhodium to iridium can effectively improve the strength and hardness of iridium. Among all the components of the selected Ir–Rh alloys, Ir–10Rh has the highest hardness and strength. The addition of Rh can cause the embrittlement of Ir–Rh alloys, and its brittleness first increases and then decreases with the increase of Rh content, and reaches the highest at Ir–50Rh. Considering the results obtained from theoretical calculations and experiments, Ir–20Rh was selected as the alloy composition for the study of hot isostatic pressing technology. The effects of mixing time, whether to mix powder with balls, and degassing temperature on the properties of metal powders were studied to find the best mixing and degassing process parameters. In the experiment of mixing powder for the iridium and rhodium alloy, it is found that the time required for mixing powder with balls to reach uniformity was shorter than that without balls. The oxygen content of the final mixed powder obtained by the two processes is the same. The nitrogen content of the metal powder mixed with the ball is slightly higher than that without the ball, but it can be reduced to below 0.001% after the degassing process. During the sintering process, with the increase in temperature, the mutual diffusion speed between iridium powder and rhodium powder increases, the sintering neck grows, the internal pores decrease, and the density of the sintered body increases. Therefore, the final decision process is to select mixing with balls for 10 h, degas at 1200 °C for 2 h, and then raise the temperature to 1800 °C for sintering. With the increase of hot isostatic pressing temperature and pressure, the density of the alloy increases. When the highest temperature (1300 °C) and highest pressure (140 MPa) are used for hot isostatic pressing for 2 h, the density can reach 95.7% of the theoretical density.

Funder

National Science Foundation;Excellent youth project of Yunnan basic research program;Key R&D Program of Yunnan Province

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. Research progress on strengthening and toughening technology of ultra-high temperature resistant iridium alloys;Changshu;Materials Review,2009

2. Research progress on the preparation process of iridium and ir-alloys;Song;Precious Metals,2013

3. Ir-base refractory superalloys for ultra-high temperatures;Yamabe-Mitarai;Metallurgical and Materials Transactions A,1998

4. Processing and application of iridium and ir-alloys;Lian;Precious Metals,2009

5. Processing of iridium and iridium alloys;Ohriner;Platinum Met. Rev.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3