Abstract
Abstract
After using the mixed acid system to modify the surface of rare earth minerals, two transition metals (Fe and Mn) are loaded on the surface of the rare earth minerals by hydrothermal method to improve the NH3-SCR (Selective catalytic reduction) activity. In this paper, a variety of characterization means like SEM, XRD, BET, XPS, H2-TPR (Temperature-programmed reduction), NH3-TPD (Temperature-programmed desorption) and NO-TPD are used to study and analyze the surface properties of rare earth minerals before and after loading transition metals. Its catalytic performance was further measured in a simulated flue gas installation. The results show that the active elements on the surface of rare earth minerals after loading transition metals are mainly oxides. The specific surface area of rare earth minerals is effectively improved, the crystallinity of the active material is reduced, and the element distribution is more uniform. In addition, a composite structure of Fe-Ce and Mn-Ce is formed on the surface of rare earth minerals, and the oxygen vacancies and adsorption sites on the surface of the minerals are significantly improved. The NOX conversion rate for Fe-loaded mineral catalysts reached 89.1% at 300 ℃. The NOX conversion rate for Mn-loaded mineral catalysts reached 92.3% at 250 ℃. Generally speaking, the NH3-SCR activity of rare earth mineral can be improved by loading transition metals (Fe and Mn).
Funder
The investigation was also financially supported by the Provincial and Ministry of Construction of National Key Laboratory Breeding Base Capacity Building Project
The investigation was financially supported by the National Natural Science Foundation of China
IMAR (Inner Mongolia Autonomous Region) Natural Science Foundation
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献