Wear resistant aluminum alloy - B4C composites fabricated by rheo-casting and rolling process

Author:

Tie DiORCID,Ren Haobo,Guan Renguo,Li Weirong,Li Hongchao,Wang Yuxiang,Zhang Junjia,Li Lei,Zhang Deliang,Chen MinfangORCID

Abstract

Abstract To reveal the formation and wear mechanisms of rheo-formed aluminum alloy - B4C composites, A356 alloy − 10 mass% B4C composite material was fabricated by semi-solid stirring rheo-casting and rolling process. The presence of Al3BC was confirmed by XRD analysis and hinted that chemical bonding formed at interfaces between aluminum matrix and B4C particles. Tensile test results demonstrated that addition of B4C facilitated improving the tensile strength by refining matrix and providing particle strengthening. Failure tests revealed that the failure type of the composite transferred from interfacial debonding to particle cracking with increasing wear load. The wear rate of the composite was approximately 48% lower than that of aluminum alloy under 60 N load. The friction coefficient of the composite under 60 N load also significantly decreased due to formation of B2O3 and H3BO3 as solid lubricants.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3