Development of red mud based sintered artificial aggregates with various industrial wastes

Author:

Narendra SomepalliORCID,Vasugi VORCID

Abstract

Abstract Red mud (RM) has drawn a lot of attention in the search for potential uses in the production of sintered artificial aggregate from industrial waste products. The main objective of the study is to produce an RM-based sintered artificial aggregate (SAA), with several blends (binary, ternary, and quaternary) using various industrial wastes. This study includes assessing the mechanical and physical properties of SAA as well as the sintering parameters in order to determine the appropriate material mix ratio. To achieve these objectives, a comprehensive experimental approach was adopted. A total of 35 different mixtures were formulated by incorporating various industrial wastes as binders and sintering additives. The green pellets were preheated at 105 °C for 24 h, and consecutively sintered at different temperatures, namely 700 °C, 900 °C, 1100 °C, and 1150 °C with a duration of 30 min. A compressive strength test was performed in order to find the mechanical property of SAA similarly water absorption and bulk density tests were conducted to find the physical properties of SAA. To characterize the SAA, scanning electron microscope analysis (SEM), X-ray diffraction (XRD) and energy dispersive x-ray analysis were conducted, and also data analysis was performed using Artificial Neural Network (ANN) tools, yielding accurate predictions. Successfully best compressive strength low water absorption SAA was produced. The best material weight mix ratio for the production of SAA was identified as (A18) RM: Fly Ash: Waste Glass Powder; 78:10:12. Out of all blends the ternary blend (A18) SAA exhibited impressive properties after 30 min of sintering at 1150 °C: high compressive strength of 22.92 MPa, water absorption of 4.26%, and bulk density of 1296.12 kg m−13. This was made possible by the high amount of Al2O3, SiO2, in the combination of fly ash, and waste glass powder with RM. SEM and XRD analysis also confirmed that the (A18) SAA achieved the best compressive strength, and low water absorption due to turning the surface and core area into a solid, reduced internal pores and formed quartz, and hematite phases. The findings of this study serve as a foundation for future work and pave the way for the development of sustainable construction materials.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3