Mix proportion optimization and early strength development in modified foam concrete: an experimental study
-
Published:2023-06-01
Issue:6
Volume:10
Page:065507
-
ISSN:2053-1591
-
Container-title:Materials Research Express
-
language:
-
Short-container-title:Mater. Res. Express
Author:
Shi Minghui,
Yin GuanshengORCID,
Wei Pengfei,
Zhang Jintao,
Yang Zhaotong
Abstract
Abstract
The influence of the single polycarboxylate superplasticizer (PCE) and blending it mixed hydroxypropyl methylcellulose (HPMC) on hardening moulding quality and surface pulverisation of foam concrete was investigated. An orthogonal experimental design was employed to determine the optimum combination of parameters for four property indexes (PIs) in this paper. A multi-index matrix analysis method was used to evaluate the parameter combinations and obtain the overall optimal performance for the PIs. The effect of calcium formate (CaF) on the early compressive strength of modified foam concrete with the most optimal combination in different density grades was also studied. The results indicate that the incomplete cement hydration reaction is the essential cause of pulverisation, which can be alleviated by adding a suitable PCE. Defoaming and precipitation occur when the PCE incorporated exceeds 0.1%, which can be mitigated by the addition of 0.02 to 0.06% HPMC. The orthogonal analysis indicates that the anti-cracking agent has a more substantial effect on the strength of the foam concrete than the thickening agent. The most significant factor of mechanical properties is PP fiber followed by dispersible latex powder (DLP). The optimal combination of foam concrete is 0.06% HPMC, 0.3% DLP, and 0.5% PP fiber. The early compressive strength of foam concrete can be significantly enhanced by increasing the CaF content. However, increasing the density level results in a decrease in the 28-day compressive strength of the foam concrete.
Funder
Science and Technology Project of the Department of Housing and Urban-Rural Development in Shaanxi Province of China
Student Innovation and Opening Laboratory project of Chang 'an university
Science and Technology Project of Housing and Urban-Rural Development Bureau of Xi'an in Shaanxi Province of China
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献