Stability of Sn based inorganic perovskite quantum dots

Author:

Pradeep K R,Chakraborty Saptarshi,Viswanatha RanjaniORCID

Abstract

Abstract Metal halide perovskite crystal structures have emerged as a class of optoelectronic materials, which combine the ease of solution processability with excellent optical absorption and emission qualities. However, the most promising perovskite structures rely on lead as a cationic species, thereby hindering commercial application. The replacement of lead with non-toxic alternatives such as tin has been studied in bulk but not in nanocrystals. In this work, we synthesize Sn and Pb based alloy perovskite nanocrystals by direct synthesis method, taking mixture of Pb and Sn precursors in the desired ratio leading to quantum dots (QDs) of CsPb1−xSnxBryI3−y with successful Sn incorporation into the host lattice. As colloidal stability of these QDs is a crucial factor for device applications, we have studied the stability of the QDs under different conditions for these Sn based QDs and have found them to degrade faster upon using anti-solvents during washing process. In order to stabilize them, we have devised a purification method that is also discussed. Further, even though the optical and crystal structure stability in some of the inorganic perovskites leaves much room for improvement, so far there have been no studies on the structure property correlation. Here we study their structural purity and their optical stability after understanding the structure property correlation in CsPbI3 and CsPbBr3 perovskite structures. The stability of Sn doped perovskites obtained from a logical understanding of structure property correlation is found to be extremely stable across the series of compounds for upto three months.

Funder

Jawaharlal Nehru Centre for Advanced Scientific Research

Sheikh Saqr Laboratory

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3