rGO/persulfate metal-free catalytic system for the degradation of tetracycline: effect of reaction parameters

Author:

Tran Dinh TrinhORCID,Nguyen Van Noi

Abstract

Abstract Reduced graphite oxide (rGO) was synthesized from graphene oxide (GO) by reduction process with the aid of ascorbic acid. GO was synthesized from graphite precursor by modified Hummers method. The prepared materials were characterized in terms of surface morphology, structure, functional group, and elemental compositions by different methods such as SEM/EDS, XRD, FT-IR, Raman, and BET. rGO/K2S2O8 system was used to study the impact of different reaction parameters on the degradation of tetracycline in water. The results showed that GO and rGO materials were successfully synthesized, with high purity. The prepared rGO promoted the degradation of tetracycline by sulphate radicals generated from K2S2O8 with an efficiency of two-fold higher than sole K2S2O8. More than 95% of 5 mg l−1 tetracycline were removed by rGO/K2S2O8 system after 40 min of reaction. The catalytic performance of rGO/K2S2O system in the degradation of tetracycline was dependent on pH of the solution, catalyst loading, tetracycline initial concentration, and persulfate concentration. The optimal conditions for the degradation of tetracycline in water were at pH10, with 5 mg l−1 tetracycline initial concentration, 20 mg l−1 of rGO, and 0.2 mM persulfate added. The catalytic performance of the system showed relatively stable, with about 75% tetracycline in solution were removed after 3 cycles. The degradation of tetracycline by rGO/K2S2O8 system followed the pseudo-first order kinetics, with a typical coefficient of determination above 0.95 for all experimental conditions.

Funder

the Ministry of Science and Technology of Vietnam

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3