Abstract
Abstract
Unlike crystalline alloys, metallic glasses (MGs) do not possess distinctive defects but exhibit a highly heterogeneous response to shear deformation. The difficulties in describing such non-uniform behaviour hamper the prediction of the mechanical properties of MGs. Using the first-principles athermal quasi-static shear simulation on a CuZr glass, we investigate the mechanical responses of various atomic-level parameters, such as the first-principles atomic stresses and electronic properties (an atomic charge, chemical bonds, etc), and their correlations. We find that the atomic von Mises stress is correlated with a
D
min
2
parameter, which is commonly employed and also serves as a unique measure of the degree of non-uniform responses. We also show little correlation between the mechanical and electronic properties during the relaxation process, while we perceive a high correlation between the change in chemical and topological bonds. We discuss the physical insights behind these correlations.
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials