Abstract
Abstract
The quasicrystalline materials represent a new materials group with definite crystallite structural characteristics, in which the AlCuFe(B) quasicrystalline alloys have been widely studied owing to its various technological advantages such as easily accessible in nature, thermal stability, affordability as well as not having toxic constituent elements. Although these materials can be achieved by different procedures, the synthesis of more extensive amounts of AlCuFeB quasicrystalline single-phase powders is more complicated. In this study, the Al67Cu20Fe10B3 quasicrystalline alloys were synthesized through the mechanical alloying process and afterward consolidated to the bulk specimens by cold isostatic pressing (CIP) technique. The structural and microstructural evolutions, as well as the morphology of as-milled powders and phase transformations, were studied during the ball milling process using field-emission scanning electron microscopy (FESEM) and x-ray diffractometry (XRD), while the thermal behavior was investigated using differential thermal analysis (DTA). The most fascinated result revealed that the stable AlCuFeB single quasicrystalline phase could be directly synthesized in short milling times (around ∼4 h) by a high-energy planetary ball milling. It was appreciated that the icosahedral phase is stable up to 300 °C, which is misplaced stability at superior temperatures and transforms into crystalline phases. The microhardness of consolidated ball-milled powders at various milling times was determined and it was figured out that the icosahedral phase has an extreme microhardness as much as 10.73 GPa.
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献