Effect of milling time on XRD phases and microstructure of a novel Al67Cu20Fe10B3 quasicrystalline alloy

Author:

Amini MeysamORCID,Rahimipour Mohammad Reza,Tayebifard Seyed Ali,Palizdar Yahya

Abstract

Abstract The quasicrystalline materials represent a new materials group with definite crystallite structural characteristics, in which the AlCuFe(B) quasicrystalline alloys have been widely studied owing to its various technological advantages such as easily accessible in nature, thermal stability, affordability as well as not having toxic constituent elements. Although these materials can be achieved by different procedures, the synthesis of more extensive amounts of AlCuFeB quasicrystalline single-phase powders is more complicated. In this study, the Al67Cu20Fe10B3 quasicrystalline alloys were synthesized through the mechanical alloying process and afterward consolidated to the bulk specimens by cold isostatic pressing (CIP) technique. The structural and microstructural evolutions, as well as the morphology of as-milled powders and phase transformations, were studied during the ball milling process using field-emission scanning electron microscopy (FESEM) and x-ray diffractometry (XRD), while the thermal behavior was investigated using differential thermal analysis (DTA). The most fascinated result revealed that the stable AlCuFeB single quasicrystalline phase could be directly synthesized in short milling times (around ∼4 h) by a high-energy planetary ball milling. It was appreciated that the icosahedral phase is stable up to 300 °C, which is misplaced stability at superior temperatures and transforms into crystalline phases. The microhardness of consolidated ball-milled powders at various milling times was determined and it was figured out that the icosahedral phase has an extreme microhardness as much as 10.73 GPa.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3