Doping effects on mechanical and thermodynamic properties of zirconium carbide systems: a first-principles study

Author:

Huang Shimin,Xu ShuangORCID,Xu Yurong,Zhou Zixiang,Li Jun

Abstract

Abstract Zirconium carbide (ZrCx) is an important high temperature structural material, whose wide engineering applications are limited by carbon vacancies. Doping various impurity elements (O, B, etc) into ZrCx may lead to a significant change in its mechanical properties and thermodynamic properties behaviors. In this paper, based on the density functional theory, the effects of carbon vacancy contents and dopant on mechanical properties and deformation behaviors of zirconium carbide were discussed. With the increase of the carbon vacancy contents, the Young’s modulus, bulk modulus, and shear modulus decrease gradually. When the tensile strain is greater than 0.4, ZrC0.75 has stronger plasticity than ZrC0.875, ZrC0.9375 and ZrC. Furthermore, the mechanical properties of ZrC, ZrC0.75O0.25, ZrC0.75B0.25 and ZrC0.75 were studied. Compared with ZrC0.75, the mechanical properties of ZrC0.75O0.25 and ZrC0.75B0.25 are improved, and the mechanical properties of the systems are improved the most by doping O atoms. Based on the quasi-harmonic approximation, the influence of doping atoms on thermodynamic properties of ZrC0.75O0.25, ZrC0.75B0.25 and ZrC0.75 was also investigated. Doping O and B atoms in ZrC0.75 can improve the thermal conductivity at high temperature, and ZrC0.75B0.25 has the highest thermal conductivity. The results also show that the thermal properties of ZrC0.75 can be improved by doping O and B atoms. With the increase of temperature, ZrC0.75O0.25 has the largest thermal expansion.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3