Molecular dynamics simulation study on impact of interface chemistry on pearlite mechanical response

Author:

Zhang HaichaoORCID,Chen Yinli,Sun Yanhui

Abstract

Abstract The molecular dynamics (MD) simulation method was adopted to explore impact of interface chemistry on pearlite mechanical response of Bagaryatskii orientation relationship between ferrite and cementite. By changing terminal surface types of cementite at ferrite-cementite interface, this study analyzed influence of interface chemistry on pearlite peak stress and plastic deformation behavior, as well as strain transmission between two phases (ferrite and cementite) during stretching process. Two horizontal directions parallel to pearlite interface were considered as loading directions respectively. The results show pearlite will experience inelastic deformation due to atomic slip in ferrite phase. When terminal surface of cementite at interface is FeC-Fe, the atomic slip in ferrite is the most difficult to occur, and inelastic deformation shall be suppressed. At this time, pearlite produces the largest peak stress. Types of terminal surface and loading direction will affect slip systems activated in ferrite. Stretching along 100 θ direction: for pearlite with Fe-FeC and Fe-Fe cementite terminal surfaces at interface, S1 ({112} 〈111〉) slip system in ferrite is activated. While terminal surface is FeC-Fe pearlite, what is activated is S2 slip system ({110} 〈111〉) in ferrite. Stretching along 0 1 0 θ direction: regardless of types of terminal surface, slip systems activated are Type S2. Compared with S1 slip system, activation of S2 slip system makes is easier for plastic deformation in ferrite to pass through ferrite-cementite interface to the cementite.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3