Mechanical, thermal and rheological characterization of polystyrene/organoclay nanocomposites containing aliphatic elastomer modifiers

Author:

Dike Ali SinanORCID,Yilmazer Ulku

Abstract

Abstract In this study, organoclay containing polystyrene (PS) based nanocomposites were prepared by extrusion in the presence of aliphatic elastomer modifiers. Three different types of aliphatic elastomeric materials and three different types of organoclays were used. Their effects on the morphology, and mechanical, thermal, and rheological properties of PS were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD), tensile and impact tests, differential scanning calorimetry (DSC), and melt flow index measurements, respectively. Lotader AX8900, Lotader AX8840 and Lotader 2210 were chosen as the aliphatic elastomeric compatibilizers; and Cloisite 15 A, Cloisite 25 A and Cloisite 30B were chosen as the organoclays. The organoclay content was kept constant at 2 wt% and elastomer content was kept constant at 5 wt% throughout the study. Significant improvement is observed on the basal spacing for 30B containing samples according to XRD analysis. SEM studies indicate that the clay particles mostly reside between the PS matrix and the spherical elastomeric domains. Additions of elastomer and organoclay decrease the MFI value of PS. Mechanical test results show that, improvement is observed in elongation at break of unfilled PS with the addition of elastomers. Organoclay addition increases the tensile modulus of PS. According to thermal characterizations, the glass transition temperature (Tg) of PS decreases with elastomer addition, whereas organoclay addition shifts Tg values to higher temperatures.

Funder

Türkiye Bilimsel ve Teknolojik Arastirma Kurumu

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3