Optimization on the synthesis of bacterial nano cellulose (BNC) from banana peel waste for water filter membrane applications

Author:

Sijabat Edwin KORCID,Nuruddin Ahmad,Aditiawati Pingkan,Sunendar Purwasasmita Bambang

Abstract

Abstract This research reports the optimization of the synthesis of bacterial nano cellulose (BNC) from banana peel waste media of Kepok bananas (Musa paradisiaca L.) using Gluconacetobacter xylinus bacteria in a fermentation process for use in water filter membrane applications. Bacterial nanocellulose (BNC) synthesis was successfully accomplished under conditions of pH 4, 0.5% urea, and varying sucrose contents (5%, 10% and 15% (w/v)). The higher sucrose content causes the pH of the banana peel extract solution to decrease at the end of Day 8 and 10 due to the metabolic activity of bacteria, which produces acetic acid. A bacterial growth pH range of 3.93–4.26 was obtained. The Optical Density (OD) values tend to increase with respect to fermentation time due to the growth of BNC-forming bacteria. The higher the added sucrose content, the higher the total amount of the acid obtained as the G. Xylinus bacteria produces acetic acid in its metabolic processes. BNC thickness is directly proportional to the increase in sucrose level but does not increase proportionally with the increase in sucrose levels from 5%, 10% (two times), and 15% (three times). The sucrose level at 5% (w/v) produces most optimal results. Optimal incubation time was obtained on Day 6, which had the highest rate of increase in thickness in addition to the supporting pH, OD value and total acid factors. The TEM analysis shows that the BNC surface morphology tends to be the same among all sucrose level (5%, 10% and 15% (w/v)). The difference can only be seen in the density of the nanocellulose. The nanocellulor nanofiber produced from banana peels has diameter sizes between 30–50 nm which potentially be used in water filter membrane application.

Funder

Lembaga Pengelola Dana Pendidikan

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3