Gadolinium-chelate functionalized magnetic CuFeSe2 ternary nanocrystals for T1-T2 dual MRI and CT imaging in vitro and in vivo

Author:

Lai Lu-Yao,Jiang Ying,Su Guang-Ping,Wu Min,Lu Xiao-Fei,Fu Shao-Zhi,Yang Lu,Shu JianORCID

Abstract

Abstract CuFeSe2 nanomaterial with high thermal conversion efficiency, well superparamagnetism, effective x-ray attenuation ability, multifunctional groups and excellent biocompatibility is beneficial to the construction of multimodal imaging probes which can combine various imaging modes to provide a synergistic advantage over a single imaging mode. This study aimed to develop a novel multimodal nanocontrast agent CuFeSe2@diethylenetriaminepentaacetic acid (DTPA)-Gd to obtain imaging information with high specificity, high sensitivity and high contrast. The morphology and physical characteristics of CuFeSe2@DTPA-Gd were detected by transmission electron microscope, scanning electron microscope, x-ray single crystal diffraction, vibrating sample magnetometer and fourier transform infrared spectrometer. The toxicity of CuFeSe2@DTPA-Gd in vivo was evaluated by hematoxylin-eosin staining. The imaging capability of CuFeSe2@DTPA-Gd in vitro and in vivo was evaluated by magnetic resonance imaging (MRI) and computed tomography (CT). This study successfully prepared nanoparticles CuFeSe2@DTPA-Gd, and experimental results in this study demonstrated CuFeSe2@DTPA-Gd is expected to be a useful CT and MRI T1-weighted imaging/T2-weighted imaging three-modal contrast agent in clinic.

Funder

National Natural Science Foundation of China

the Project of Southwest Medical University

the Project of the Affiliated Hospital of Southwest Medical University

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference30 articles.

1. The burden of rare cancers in the United States;DeSantis;CA Cancer J Clin.,2017

2. Cancer treatment and survivorship statistics, 2019;Miller;CA Cancer J Clin.,2019

3. Melanoma;Schadendorf;Lancet,2018

4. Cancer survivorship;Shapiro;N. Engl. J. Med.,2018

5. Manganese oxide nanoparticles as MRI contrast agents in tumor multimodal imaging and therapy;Cai;Int. J. Nanomed.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3