Hot filament chemical vapor deposition temperature field optimization for diamond films deposited on silicon nitride substrates

Author:

Wu Yuhou,Zhang HuisenORCID,Yan GuangyuORCID,Liu Lusheng,Cristea DanielORCID,Wang He,Yang Yumiao,Shen Jianhui

Abstract

Abstract The influence of some key parameters of hot filament chemical vapor deposition (HFCVD) on the temperature distribution during the deposition of diamond coatings on silicon nitride (Si3N4) substrates was assessed with the help of the finite element method. Solid heat transfer, fluid heat transfer and surface radiation heat transfer mechanisms were used to calculate the substrate temperature in the steady state during the deposition process. The accuracy of the model was verified by comparing the simulation model with experimental measurements. The comparison shows that the deviation between the model and the actual substrate temperature measurements is within 3%. Furthermore, a Taguchi orthogonal experiment was designed (3 factors, 3 levels, L9). By changing the number of hot filaments, the distance between the filaments and the substrate, and the separation between two adjacent hot filaments, the influence trend of these parameters on the substrate temperature was assessed, leading to an optimal hot filament arrangement. A deposition experiment was carried out using the optimized parameters, and the results showed that the substrate surface temperature obtained by numerical simulation is highly consistent with the temperature measured by the infrared thermometer. The optimized deposition parameters contributed to a more suitable temperature range and more uniform temperature distribution on the Si3N4 ceramic substrate. The deposited diamond film exhibited uniform crystal quality and grain morphology, thus verifying the validity of the simulation results.

Funder

Programme of Introducing Talents of Discipline to Universities

National Natural Science Foundation of China

Shenyang Science and Technology Bureau

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3