Multi-response optimization of AISI H11 using Taguchi and Grey relational analysis

Author:

Kumar R Suresh,Kumar S DharaniORCID,Rajkumar S

Abstract

Abstract Tool & Die is one of the important department in the manufacturing industries that takes care of proper designing and fabrication of tools and dies required for the production. In this sector, tool steels are used as the primary source of materials. These tool steels belongs to the family of carbon and alloy steels. Mostly used alloying elements are chromium, tungsten, molybdenum and vanadium and are heat-treated. The objective of the work involves machinability study of AISI H11 chromium hot-worked steel extensively used for tool & die making. It deals with the analysis of machining parameters and its influences on the responses considered. Here the controlling parameters considered are cutting speed (Cs), feed rate (Fr) and depth of cut (Dc) and responses as surface roughness (Ra) and material removal rate (Mrr). Each controlling parameters are assigned with 3 levels and experimental runs were executed as per taguchi robust design. To determine multi-objective optimal solution, grey relational analysis (GRA) is employed. GRA is used as it provides a feasible platform for converting a multi-objective function into single-objective function. The experimental runs were performed as per L27 orthogonal array sequence in CNC end-milling. The responses recorded are then analyzed using analysis of variance (ANOVA) and optimal solutions are validated through confirmatory runs. The entire machinability study of AISI H11 is performed in two conditions involving rough machining and finish machining. This has been addressed based on the machining scenario followed in industries taking up job orders. The confirmatory results for rough machining recorded was found to be 0.7871 microns against predicted value of 0.7654 microns resulting with a deviation error of 2.88%. Similarly, for finish machining, confirmatory runs recorded 0.8579 microns against predicted value of 0.8357 microns resulting with a deviation error of 2.66%. The deviation level indicated above between predicted and observed values are minimum, which shows the reliability of the optimal solutions arrived in.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3