Abstract
Abstract
Biomaterials are complex composites with hierarchical structure and multi-function. The mechanical properties of biomaterials are often outstanding, especially considering their weak constituents. After evolving for millions of years to adapt to water surroundings, the diving beetles Cybister japonicus possess a pair of relatively large flattened hind legs which are optimized for sliding and rowing functions for swimming. In this paper, the morphology and microstructures of the hind leg biomaterial of Cybister japonicus are observed by scanning electron microscope (SEM). The nano-mechanical properties of the hind leg cuticle are measured with a nano-indentation system and the bending fracture stress is investigated by employing a multi-functional mechanical properties testing machine. The results of this study provide an appropriate biological pattern for the structural design of novel advanced lightweight composites with high specific strength.
Funder
Natural Science Foundation of Jiangsu Province
Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献