Desirability combined response surface methodology approach for optimization of prednisolone acetate loaded chitosan nanoparticles and in-vitro assessment.

Author:

Iftikhar Syed YasirORCID,Iqbal Furqan MuhammadORCID,Hassan Waseem,Nasir Bushra,Sarwar Abdur Rehman

Abstract

Abstract The objective of the current study was to design and optimize prednisolone acetate-loaded chitosan nanoparticles (NPs) through design experts for ophthalmic drug delivery. Chitosan NPs were prepared by ionic gelation using sodium tripolyphosphate (TPP). The effects of variables, such as chitosan concentration, chitosan to TPP mass ratio (ch:TPP), and prednisolone concentration on particle size, zeta potential (ZP), and polydispersity index (PDI), were studied using a three-factor three-level central composite design (CCD), and optimum experimental conditions were determined using the desirability function combined response surface methodology (RSM). Quadratic and reduced quadratic polynomial models were generated to predict and evaluate the independent variables with respect to the dependent variables. The composition of the optimal formulation was determined to be a chitosan concentration of 0.26%, chitosan to TPP mass ratio of 6:1, and drug concentration with respect to chitosan mass of 8.11%. The optimized formulation showed a percentage entrapment efficiency (% EE) of 78.32%, mean particle size of 193.5, PDI of 0.219, ZP of 10.3 mV, and 86.15% cumulative drug release. The morphology of the NPs was found to be nearly spherical in shape by scanning electron microscopy (SEM). Differential scanning calorimetry (DSC) revealed successful loading of the drug in NPs, and FTIR confirmed polymer and drug compatibility.

Funder

Pakistan Science Foundation

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference42 articles.

1. Progress in Nanomedicine: Approved and Investigational Nanodrugs;Ventola;P & T : a Peer-Reviewed Journal for Formulary Management,2017

2. Engineered nanoparticles as precise drug delivery systems;Yih;Journal of Cellular Biochemistry,2006

3. Bioadhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity: in-vitro and ex-vivo studies;Roque;European Polymer Journal,2018

4. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle;Harde;Expert Opinion on Drug Delivery,2011

5. Ocular drug delivery: Nanomedicine applications;Vandervoort;Nanomedicine,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3