Abstract
Abstract
The basic electronic and mechanical properties of 2-Pmmn borophene and their strain and electric field-dependence are studied by the first-principles calculations. The Young’s moduli are 236 and 89 GPa in the armchair and zigzag directions, respectively, indicating that the borophene has giant mechanical anisotropy. We also find that the borophene presents anisotropic electronic properties. The borophene is electroconductive in armchair direction but has a bandgap in the zigzag direction. To modulate the band structure, we applied strain and electric fields on borophene, and find that, the resistance of borophene decreases with the increase of applied strain, while the applied electric field has almost no effect on its band structure. The enhanced conductivity of borophene upon applied strain is ascribed to the expansion of the buckled structure through the analysis of the charge density of the strained borophene.
Funder
NSFC
Shanghai Institutions of Higher Learning, and Shanghai Rising Star Program
Shanghai Program for Professor of Special Appointment
Ministry of Education
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献