Enhancing mechanical properties of cellular core sandwich panels: a review of topological parameters and design improvements

Author:

Charkaoui Assil,Hassan Noha MORCID,Bahroun ZiedORCID

Abstract

Abstract Sandwich panels’ exceptional mechanical properties and low density, owing to their multifunctional characteristics and innovative design, made them a popular choice in numerous industries. Sandwich panels with cellular cores are known for their exceptional energy absorption properties, which make them effective energy absorbers for high-impact scenarios such as accidents or explosions. For advancing research on sandwich panels, it is vital to develop innovative designs that can enhance their energy absorption and flexural stiffness. This review outlines the most essential topological parameters that influence the mechanical properties of cellular core structures. This paper gives insight into recent advancements related to optimizing sandwich panel structures for various engineering applications. The topological parameters investigated by researchers include core structure, thickness, number of layers, and material. The choice of core material governs the overall mechanical behavior of the panel. In this paper, various structures, including foam, honeycomb, lattice, corrugated, bioinspired, and various materials, are compared. Functionally graded structures were also explored in the literature as they can significantly optimize the response of sandwich panels in high and low-velocity impact applications. Similarly, a multi-layered core structure can enhance the total stiffness and specific energy absorption of the panel.

Funder

American University of Sharjah

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference141 articles.

1. Mechanical characterisation of a glass/polyester sandwich structure for marine applications;Bella;Mater. Des.,2012

2. Sandwiched composites in aerospace engineering;Nunes,2016

3. Computational models for sandwich panels and Shells;Noor;Appl. Mech. Rev.,1996

4. Study of composite sandwich structure and bending characteristics - a review;Rayjade;International Journal of Current Engineering and Technology,2015

5. Mechanical behaviour of a sandwich panel composed of hybrid skins and novel glass fibre reinforced polymer truss core;Djama;Compos. Struct.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3