The mechanical and corrosion properties of WCCo–Al coatings formed on AA2024 using the HVOF method

Author:

Akkaş MehmetORCID

Abstract

Abstract This paper investigates the microstructural, mechanical, and electrical-conductivity properties of WCCo–Al composite coatings produced on the Al alloy AA2024 using the high-velocity oxygen fuel (HVOF) thermal-spray method. In an experimental study, the amount of WCCo added to Al powders was varied between 25, 50, 75, and 100 wt%. The AA2024 used as the substrate material was cleaned in acetone solution and then subjected to a sanding process using Al2O3 sand that had a grain size of 24–35 mesh for improved bonding of the coating layer. Nitrogen was used as the powder-carrier gas. After the coating process, the substrates were cooled using high-pressure air jets. The coated samples were then compared in terms of their microstructure, phase composition, microhardness, electrical conductivity, and wear properties. The microstructure, phase composition, and surfaces of the coatings after abrasion were examined using a scanning electron microscope (SEM) and an x-ray diffractogram (XRD). The XRD results showed that the WCCo–Al coating layer was composed of Al, Al0.52Co0.48, Al30Mg23, Al0.47Co0.53, MgCuAl2, WCu2Al8, AlCo, Al12W, and BNi2 phases. The addition of WCCo increased the hardness of the coatings. For instance, the highest hardness value was measured as 1,335 HV0.2 in the coating produced using 100% WCCo. The amount of WCCo in the powder also affected the microstructure, phase composition, and hardness of the coatings. Moreover, the addition of WCCo lowered the electrical conductivity, wear rates, and friction coefficients of the coatings. In indentation tests, the hardness values of the coatings were generally found to increase with increasing applied load. In corrosion tests, the corrosion resistance of the coatings was observed to increase as the amount of WCCo in the coating layer increased. The highest peak depth was 36.94 μm in the sample coated with 100% Al, and the lowest peak depth was 6.82 μm in the sample coated with 100% WCCo. The coated materials had outstanding tribological performance compared to the uncoated ones. The increase in wear resistance provided by the coating was caused by a large amount of dispersed WC and Co.

Funder

Kastamonu University Scientific Research Projects Unit

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3