Study on microstructure and mechanical properties of 5052 aluminum alloy MIG welded joint for high-speed train

Author:

Liu Shuang,Liu ZhanqiORCID,Wang Haijiang,Liang Jianhui,Zhu XiaoouORCID

Abstract

Abstract In this paper, the MIG welding process is utilized to weld a 3 mm thick 5052 aluminum alloy plate by using ER5356 welding wire as filler. The effects of different welding speeds on the microstructure and mechanical properties of the weld are systematically studied utilizing a metallographic microscope, x-ray diffractometer, scanning electron microscope, room temperature tensile, and microhardness. It was found that there were pore defects in the samples at lower or higher welding speeds, and there was no penetration at the maximum welding speed. When the welding speed is 650 mm min−1, the weld is well-formed, the surface is flat without pores, the fish scale is evenly distributed, and the weld shows good penetration. The intermetallic compounds of all the welds are mainly composed of α(Al), Mg2Si, Al3Fe, and Al3Mg2. The mechanical properties of the samples show that the hardness of the weld reaches the maximum value of 56.7HV at this welding speed, and the tensile strength and elongation are 210 MPa and 14.3%, respectively. The fracture is located at the junction of the base metal and the heat-affected zone, and the fracture type showed typical ductile fracture.

Funder

Provincial Department of Education

Basic Scientific Research Project of Liaoning

Foundation of Liaoning Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3