T 1-mapping and dielectric properties evaluation of a 3D printable rubber-elastomeric polymer as tissue mimicking materials for MRI phantoms

Author:

Talalwa LotfiORCID,Natour Ghaleb,Bauer Andreas,Drzezga Alexander,Gordji-Nejad Ali,Beer SimoneORCID

Abstract

Abstract In this study, a new series of 3D printable rubber-elastomeric polymer called PORO-LAY materials have been investigated regarding their suitability to serve as tissue mimicking materials (TMMs) for MRI phantoms. PORO-LAY materials have been previously used in biofuel cell developments, particle filtrations and modeling elastic tissues. We evaluated the electrical permittivity, electrical conductivity, spin-lattice T 1-relaxation time and acquired the MRI contrast for simple and multi-material complex 3D printed shapes made of PORO-LAY materials at 3.0 T. The results showed a T 1 diversity within PORO-LAY materials, which reveals in different MR image contrasts. The outcome favors PORO-LAY as an appropriate candidate that can be used in multi-materials additive manufacturing to produce realistic shapes such as white/grey matter structures for MRI phantoms with visible clear contrast. Finally, this study could serve as a reference and guideline when using these materials as tissue mimicking materials for different types of human body tissues and provide a promising opportunity to design novel phantoms for a wide range of MRI applications.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3