Enhanced acetone detection for non-invasive diabetes monitoring by atomic layer deposited WO3 nanoparticle on hierarchical In2O3 particles

Author:

Sun XiaojieORCID,Wang Jun,Wang Yingbin,Zhang Bo,Liang Yong,Liu Yiqian,Duan Shaobo,Guo Wanli

Abstract

Abstract This study addressed the critical need for non-invasive monitoring of diabetes by proposing an acetone gas sensor based on hierarchical In2O3 with atomic layer deposition (ALD)-deposited WO3 nanoparticles. The sensor fabrication involved a carefully designed process, leveraging ALD to control WO3 deposition, ensuring uniform distribution, and mitigating agglomeration. The resulting composite exhibited enhanced sensitivity, making it promising for detecting acetone, a key biomarker for diabetes. Material synthesis, including hydrothermal formation of In2O3 hierarchy particles and ALD of WO3, was meticulously conducted. Comprehensive characterizations, involving SEM, TEM, EDX, XRD, XPS, and BET, validated the successful synthesis and deposition. The sensor’s response to varying acetone concentrations (50–2000 ppb) was systematically investigated, revealing a positive correlation. The In2O3/WO3–2 sensor exhibited the highest sensitivity, attributed to the catalytic properties of WO3. The proposed sensor presented a cost-effective, sensitive, and selective solution, paving the way for non-invasive diabetes monitoring.

Publisher

IOP Publishing

Reference37 articles.

1. Genetics of diabetes mellitus and diabetes complications;Cole;Nat. Rev. Nephrol.,2020

2. The global epidemics of diabetes in the 21st century: current situation and perspectives;Standl;European Journal of Preventive Cardiology,2020

3. The finger-prick sign of diabetes: an observational study including dermatoscopic features;Boffa;Skinmed,2019

4. The most common methods for breath acetone concentration detection: a review;Obeidat;IEEE Sens. J.,2021

5. Detection of acetone via exhaling human breath for regular monitoring of diabetes by low-cost sensing device based on perovskite BaSnO3 nanorods;Verma;Sensors Actuators B,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3