Mechanical performance and failure modes of self-piercing riveted joints between AA6061 and solution-treated TC4 alloy

Author:

Huang Zhi-ChaoORCID,Lu Dao-Chun,Zhang Yong-Chao,Jiang Yu-QiangORCID,Lu Yan,Guo Yan-Wei

Abstract

Abstract TC4 titanium alloy and AA6061 aluminum alloy are widely used in the transportation industry because of their excellent mechanical properties and lightweight. In this work, the TC4 titanium alloy was solution heat treated between 800 °C and 990 °C for 1 h, and water cooled to room temperature. The riveting and tensile tests at room temperature were conducted to evaluate the joint performance. The tensile strength and failure morphology were used to discuss the mechanical performance of joints. Solution heat treatment significantly improves the elongation, mechanical performance, and hardness of TC4 titanium alloy. Compared with the as-received material, the elongation of the treated TC4 titanium alloy is increased by 13% at the solution temperature of 900 °C, the tensile strength was added by 175 MPa at 930 °C, and the hardness was significantly increased. The optimal performance of the TC4 titanium alloy can be obtained at 930 °C. The tensile strength of the joint with the TC4 alloy solution heat treated at 930 °C is the highest of all joints. When the TC4 alloy was solution treated between 800 °C and 850 °C, the rivets were pulled from the AA6061. While at 900 °C and 930 °C, the AA6061 sheet was broken at the rivet. At 960 °C and 990 °C, the TC4 sheet was broken near the rivet. The crack size of TC4 titanium alloy gradually decreases from the rivet outward, and the crack spreads around the rivet. Severe friction can be found, which causes the peeling of the lower plate AA6061 alloy. The breaks of TC4 alloys were the plastic broken. The failure morphology of the TC4 alloy sheet is different under different solution heat treatment temperatures.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3