Development of high-performance fiber-reinforced concrete for drilling wellbore walls in highly mineralized strata and its sulfate attack resistanceattack resistance

Author:

Din ZongchuangORCID,Yao ZhishuORCID,Hu Kun,Fang Yu

Abstract

Abstract Metakaolin has been incorporated into high-performance fiber-reinforced concrete for wellbore wall drilling to enhance its durability in strata with highly mineralized water. This study established a benchmark, utilizing fly ash, slag powder, and metakaolin as the factors in an orthogonal test to assess the durability of concrete against sulfate attack. The range analysis and an integrated balance method were employed to optimize the mix proportion, the optimized mix proportion of high-performance concrete was determined as concrete: cement: fly ash: slag powder: metakaolin: pumping agents: gravel: sand: water: polyvinyl alcohol = 1: 0.2: 0.075: 0.05: 0.106: 2.767: 1.556: 0.371: 0.003. The apparent and microscopic morphologies before and after the erosion of both the benchmark group and optimized mix proportion group were investigated. The triaxial permeability tests were conducted on these groups under varying confining pressures to elucidate concrete permeability trends. Additionally, a damage constitutive model for concrete under a sulfate attack was formulated based on the durability tests. This study could provide valuable insights into the industrial utilization of concrete in deep shafts within highly mineralized water strata in Northwestern China.

Funder

National Natural Science Foundation of China

Graduate Science Research Program

Anhui University

Anhui University of Science and Technology

Publisher

IOP Publishing

Reference49 articles.

1. Anti-corrosion mechanism and performance test of high-performance concrete for shaft wall;Li;Shaanxi Meitan,2023

2. Macro- and meso-scale study on dynamic mechanical properties of shaft lining concrete exposed to high water pressure;Xue;Case Studies in Construction Materials,2022

3. Mechanical properties of high-strength high-performance reinforced concrete shaft lining structures in deep freezing wells);Peng;Advances in Civil Engineering,2019

4. Treatment experiment and process for underground utilization of high salinity mine water;Lei;Coal Engineering,2023

5. Industrial test on outer frozen shaft wall of high strength and high-performance concrete;Yue;Advanced Materials Research,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3